filters.go simplified
This commit is contained in:
parent
524fd851ea
commit
eaf9383af0
178
filters.go
178
filters.go
|
@ -19,6 +19,7 @@ package resize
|
|||
import (
|
||||
"image"
|
||||
"image/color"
|
||||
"math"
|
||||
)
|
||||
|
||||
// color.RGBA64 as array
|
||||
|
@ -34,81 +35,24 @@ func clampToUint16(x float32) (y uint16) {
|
|||
y = uint16(x)
|
||||
if x < 0 {
|
||||
y = 0
|
||||
} else if x > float32(0xffff) {
|
||||
} else if x > float32(0xfffe) {
|
||||
y = 0xffff
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Nearest-neighbor interpolation.
|
||||
// Approximates a value by returning the value of the nearest point.
|
||||
func NearestNeighbor(x, y float32, img image.Image) color.RGBA64 {
|
||||
xn, yn := int(float32(int(x))+0.5), int(float32(int(y))+0.5)
|
||||
c := toRGBA(img.At(xn, yn))
|
||||
return color.RGBA64{c[0], c[1], c[2], c[3]}
|
||||
}
|
||||
|
||||
// Linear interpolation.
|
||||
func linearInterp(x float32, p *[2]RGBA) (c RGBA) {
|
||||
x -= float32(int(x))
|
||||
for i := range c {
|
||||
c[i] = clampToUint16(float32(p[0][i])*(1.0-x) + x*float32(p[1][i]))
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Bilinear interpolation.
|
||||
func Bilinear(x, y float32, img image.Image) color.RGBA64 {
|
||||
xf, yf := int(x), int(y)
|
||||
|
||||
var row [2]RGBA
|
||||
var col [2]RGBA
|
||||
for i := 0; i < 2; i++ {
|
||||
row = [2]RGBA{toRGBA(img.At(xf, yf+i)), toRGBA(img.At(xf+1, yf+i))}
|
||||
col[i] = linearInterp(x, &row)
|
||||
}
|
||||
|
||||
c := linearInterp(y, &col)
|
||||
return color.RGBA64{c[0], c[1], c[2], c[3]}
|
||||
}
|
||||
|
||||
// cubic interpolation
|
||||
func cubicInterp(x float32, p *[4]RGBA) (c RGBA) {
|
||||
x -= float32(int(x))
|
||||
for i := range c {
|
||||
c[i] = clampToUint16(float32(p[1][i]) + 0.5*x*(float32(p[2][i])-float32(p[0][i])+x*(2.0*float32(p[0][i])-5.0*float32(p[1][i])+4.0*float32(p[2][i])-float32(p[3][i])+x*(3.0*(float32(p[1][i])-float32(p[2][i]))+float32(p[3][i])-float32(p[0][i])))))
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Bicubic interpolation.
|
||||
func Bicubic(x, y float32, img image.Image) color.RGBA64 {
|
||||
xf, yf := int(x), int(y)
|
||||
|
||||
var row [4]RGBA
|
||||
var col [4]RGBA
|
||||
for i := 0; i < 4; i++ {
|
||||
row = [4]RGBA{toRGBA(img.At(xf-1, yf+i-1)), toRGBA(img.At(xf, yf+i-1)), toRGBA(img.At(xf+1, yf+i-1)), toRGBA(img.At(xf+2, yf+i-1))}
|
||||
col[i] = cubicInterp(x, &row)
|
||||
}
|
||||
|
||||
c := cubicInterp(y, &col)
|
||||
return color.RGBA64{c[0], c[1], c[2], c[3]}
|
||||
}
|
||||
|
||||
// 1-d convolution with windowed sinc for a=2.
|
||||
func lanczos2_x(x float32, p *[4]RGBA) (c RGBA) {
|
||||
func convolution1d(x float32, kernel func(float32, int) float32, p []RGBA) (c RGBA) {
|
||||
x -= float32(int(x))
|
||||
|
||||
var kernel float32
|
||||
var sum float32 = 0 // for kernel normalization
|
||||
var k float32
|
||||
var sum float32 = 0
|
||||
l := [4]float32{0.0, 0.0, 0.0, 0.0}
|
||||
|
||||
for j := range p {
|
||||
kernel = float32(Sinc(float64(x-float32(j-1)))) * float32(Sinc(float64((x-float32(j-1))/2.0)))
|
||||
sum += kernel
|
||||
k = kernel(x, j)
|
||||
sum += k
|
||||
for i := range c {
|
||||
l[i] += float32(p[j][i]) * kernel
|
||||
l[i] += float32(p[j][i]) * k
|
||||
}
|
||||
}
|
||||
for i := range c {
|
||||
|
@ -117,53 +61,77 @@ func lanczos2_x(x float32, p *[4]RGBA) (c RGBA) {
|
|||
return
|
||||
}
|
||||
|
||||
func filter(x, y float32, img image.Image, n int, kernel func(x float32, j int) float32) color.RGBA64 {
|
||||
xf, yf := int(x)-n/2+1, int(y)-n/2+1
|
||||
|
||||
row := make([]RGBA, n)
|
||||
col := make([]RGBA, n)
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
for j := 0; j < n; j++ {
|
||||
row[j] = toRGBA(img.At(xf+j, yf+i))
|
||||
}
|
||||
col[i] = convolution1d(x, kernel, row)
|
||||
}
|
||||
|
||||
c := convolution1d(y, kernel, col)
|
||||
return color.RGBA64{c[0], c[1], c[2], c[3]}
|
||||
}
|
||||
|
||||
// Nearest-neighbor interpolation.
|
||||
// Approximates a value by returning the value of the nearest point.
|
||||
func NearestNeighbor(x, y float32, img image.Image) color.RGBA64 {
|
||||
n := 2
|
||||
kernel := func(x float32, j int) (y float32) {
|
||||
if x+0.5 >= float32(j) && x+0.5 < float32(j)+1 {
|
||||
y = 1
|
||||
} else {
|
||||
y = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
return filter(x, y, img, n, kernel)
|
||||
}
|
||||
|
||||
// Bicubic interpolation
|
||||
func Bilinear(x, y float32, img image.Image) color.RGBA64 {
|
||||
n := 2
|
||||
kernel := func(x float32, j int) float32 {
|
||||
xa := float32(math.Abs(float64(x - float32(j))))
|
||||
return 1 - xa
|
||||
}
|
||||
return filter(x, y, img, n, kernel)
|
||||
}
|
||||
|
||||
// Bicubic interpolation
|
||||
func Bicubic(x, y float32, img image.Image) color.RGBA64 {
|
||||
n := 4
|
||||
kernel := func(x float32, j int) (y float32) {
|
||||
xa := float32(math.Abs(float64(x - float32(j-1))))
|
||||
if xa <= 1 {
|
||||
y = 1.5*xa*xa*xa - 2.5*xa*xa + 1
|
||||
} else {
|
||||
y = -0.5*xa*xa*xa + 2.5*xa*xa - 4*xa + 2
|
||||
}
|
||||
return
|
||||
}
|
||||
return filter(x, y, img, n, kernel)
|
||||
}
|
||||
|
||||
// Lanczos interpolation (a=2).
|
||||
func Lanczos2(x, y float32, img image.Image) color.RGBA64 {
|
||||
xf, yf := int(x), int(y)
|
||||
|
||||
var row [4]RGBA
|
||||
var col [4]RGBA
|
||||
for i := range row {
|
||||
row = [4]RGBA{toRGBA(img.At(xf-1, yf+i-1)), toRGBA(img.At(xf, yf+i-1)), toRGBA(img.At(xf+1, yf+i-1)), toRGBA(img.At(xf+2, yf+i-1))}
|
||||
col[i] = lanczos2_x(x, &row)
|
||||
n := 4
|
||||
kernel := func(x float32, j int) float32 {
|
||||
return float32(Sinc(float64(x-float32(j-1)))) * float32(Sinc(float64((x-float32(j-1))/float32(2))))
|
||||
}
|
||||
|
||||
c := lanczos2_x(y, &col)
|
||||
return color.RGBA64{c[0], c[1], c[2], c[3]}
|
||||
}
|
||||
|
||||
// 1-d convolution with windowed sinc for a=3.
|
||||
func lanczos3_x(x float32, p *[6]RGBA) (c RGBA) {
|
||||
x -= float32(int(x))
|
||||
|
||||
var kernel float32
|
||||
var sum float32 = 0 // for kernel normalization
|
||||
l := [4]float32{0.0, 0.0, 0.0, 0.0}
|
||||
|
||||
for j := range p {
|
||||
kernel = float32(Sinc(float64(x-float32(j-2)))) * float32(Sinc(float64((x-float32(j-2))/3.0)))
|
||||
sum += kernel
|
||||
for i := range c {
|
||||
l[i] += float32(p[j][i]) * kernel
|
||||
}
|
||||
}
|
||||
for i := range c {
|
||||
c[i] = clampToUint16(l[i] / sum)
|
||||
}
|
||||
return
|
||||
return filter(x, y, img, n, kernel)
|
||||
}
|
||||
|
||||
// Lanczos interpolation (a=3).
|
||||
func Lanczos3(x, y float32, img image.Image) color.RGBA64 {
|
||||
xf, yf := int(x), int(y)
|
||||
|
||||
var row [6]RGBA
|
||||
var col [6]RGBA
|
||||
for i := range row {
|
||||
row = [6]RGBA{toRGBA(img.At(xf-2, yf+i-2)), toRGBA(img.At(xf-1, yf+i-2)), toRGBA(img.At(xf, yf+i-2)), toRGBA(img.At(xf+1, yf+i-2)), toRGBA(img.At(xf+2, yf+i-2)), toRGBA(img.At(xf+3, yf+i-2))}
|
||||
col[i] = lanczos3_x(x, &row)
|
||||
n := 6
|
||||
kernel := func(x float32, j int) float32 {
|
||||
return float32(Sinc(float64(x-float32(j-2)))) * float32(Sinc(float64((x-float32(j-2))/float32(3))))
|
||||
}
|
||||
|
||||
c := lanczos3_x(y, &col)
|
||||
return color.RGBA64{c[0], c[1], c[2], c[3]}
|
||||
return filter(x, y, img, n, kernel)
|
||||
}
|
||||
|
|
26
resize.go
26
resize.go
|
@ -30,11 +30,6 @@ import (
|
|||
"runtime"
|
||||
)
|
||||
|
||||
var (
|
||||
// NCPU holds the number of available CPUs at runtime.
|
||||
NCPU = runtime.NumCPU()
|
||||
)
|
||||
|
||||
// Trans2 is a 2-dimensional linear transformation.
|
||||
type Trans2 [6]float32
|
||||
|
||||
|
@ -86,15 +81,7 @@ func Resize(width, height uint, img image.Image, interp InterpolationFunction) i
|
|||
resizedImg := image.NewRGBA64(image.Rect(0, 0, int(oldWidth/scaleX), int(oldHeight/scaleY)))
|
||||
b := resizedImg.Bounds()
|
||||
|
||||
// prevent resize from doing too much work
|
||||
// if #CPUs > width
|
||||
n := 1
|
||||
if NCPU < b.Dy() {
|
||||
n = NCPU
|
||||
} else {
|
||||
n = b.Dy()
|
||||
}
|
||||
|
||||
n := numJobs(b.Dy())
|
||||
c := make(chan int, n)
|
||||
for i := 0; i < n; i++ {
|
||||
go func(b image.Rectangle, c chan int) {
|
||||
|
@ -115,3 +102,14 @@ func Resize(width, height uint, img image.Image, interp InterpolationFunction) i
|
|||
|
||||
return resizedImg
|
||||
}
|
||||
|
||||
// Set number of parallel jobs
|
||||
// but prevent resize from doing too much work
|
||||
// if #CPUs > width
|
||||
func numJobs(d int) (n int) {
|
||||
n = runtime.NumCPU()
|
||||
if n > d {
|
||||
n = d
|
||||
}
|
||||
return
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user