Blur input image during downscaling by scaling the filter kernel to prevent moires in the output image

This commit is contained in:
jst 2012-09-19 21:03:56 +02:00
parent d0b2b9bc39
commit e548f52385
3 changed files with 65 additions and 31 deletions

View File

@ -43,19 +43,25 @@ func clampToUint16(x float32) (y uint16) {
type filterModel struct {
src image.Image
size int
factor [2]float32
kernel func(float32) float32
tempRow []rgba16
tempCol []rgba16
tempRow, tempCol []rgba16
}
func (f *filterModel) convolution1d(x float32, p []rgba16) (c rgba16) {
func (f *filterModel) convolution1d(x float32, p []rgba16, isRow bool) (c rgba16) {
var k float32
var sum float32 = 0
l := [4]float32{0.0, 0.0, 0.0, 0.0}
var index uint
if isRow {
index = 0
} else {
index = 1
}
for j := range p {
k = f.kernel(x - float32(j))
k = f.kernel((x - float32(j)) / f.factor[index])
sum += k
for i := range c {
l[i] += float32(p[j][i]) * k
@ -68,43 +74,49 @@ func (f *filterModel) convolution1d(x float32, p []rgba16) (c rgba16) {
}
func (f *filterModel) Interpolate(x, y float32) color.RGBA64 {
xf, yf := int(x)-f.size/2+1, int(y)-f.size/2+1
xf, yf := int(x)-len(f.tempRow)/2+1, int(y)-len(f.tempCol)/2+1
x -= float32(xf)
y -= float32(yf)
for i := 0; i < f.size; i++ {
for j := 0; j < f.size; j++ {
for i := 0; i < len(f.tempCol); i++ {
for j := 0; j < len(f.tempRow); j++ {
f.tempRow[j] = toRgba16(f.src.At(xf+j, yf+i))
}
f.tempCol[i] = f.convolution1d(x, f.tempRow)
f.tempCol[i] = f.convolution1d(x, f.tempRow, true)
}
c := f.convolution1d(y, f.tempCol)
c := f.convolution1d(y, f.tempCol, false)
return color.RGBA64{c[0], c[1], c[2], c[3]}
}
func createFilter(img image.Image, factor [2]float32, size int, kernel func(float32) float32) Filter {
sizeX := size * (int(math.Ceil(float64(factor[0]))))
sizeY := size * (int(math.Ceil(float64(factor[1]))))
return &filterModel{img, factor, kernel, make([]rgba16, sizeX), make([]rgba16, sizeY)}
}
// Nearest-neighbor interpolation
func NearestNeighbor(img image.Image) Filter {
return &filterModel{img, 2, func(x float32) (y float32) {
func NearestNeighbor(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 2, func(x float32) (y float32) {
if x >= -0.5 && x < 0.5 {
y = 1
} else {
y = 0
}
return
}, make([]rgba16, 2), make([]rgba16, 2)}
})
}
// Bilinear interpolation
func Bilinear(img image.Image) Filter {
return &filterModel{img, 2, func(x float32) float32 {
func Bilinear(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 2, func(x float32) float32 {
return 1 - float32(math.Abs(float64(x)))
}, make([]rgba16, 2), make([]rgba16, 2)}
})
}
// Bicubic interpolation (with cubic hermite spline)
func Bicubic(img image.Image) Filter {
return &filterModel{img, 4, func(x float32) (y float32) {
func Bicubic(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 4, func(x float32) (y float32) {
absX := float32(math.Abs(float64(x)))
if absX <= 1 {
y = absX*absX*(1.5*absX-2.5) + 1
@ -112,11 +124,11 @@ func Bicubic(img image.Image) Filter {
y = absX*(absX*(2.5-0.5*absX)-4) + 2
}
return
}, make([]rgba16, 4), make([]rgba16, 4)}
})
}
func MitchellNetravali(img image.Image) Filter {
return &filterModel{img, 4, func(x float32) (y float32) {
func MitchellNetravali(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 4, func(x float32) (y float32) {
absX := float32(math.Abs(float64(x)))
if absX <= 1 {
y = absX*absX*(7*absX-12) + 16.0/3
@ -124,7 +136,7 @@ func MitchellNetravali(img image.Image) Filter {
y = -(absX - 2) * (absX - 2) / 3 * (7*absX - 8)
}
return
}, make([]rgba16, 4), make([]rgba16, 4)}
})
}
func lanczosKernel(a uint) func(float32) float32 {
@ -134,11 +146,11 @@ func lanczosKernel(a uint) func(float32) float32 {
}
// Lanczos interpolation (a=2).
func Lanczos2(img image.Image) Filter {
return &filterModel{img, 4, lanczosKernel(2), make([]rgba16, 4), make([]rgba16, 4)}
func Lanczos2(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 4, lanczosKernel(2))
}
// Lanczos interpolation (a=3).
func Lanczos3(img image.Image) Filter {
return &filterModel{img, 6, lanczosKernel(3), make([]rgba16, 6), make([]rgba16, 6)}
func Lanczos3(img image.Image, factor [2]float32) Filter {
return createFilter(img, factor, 6, lanczosKernel(3))
}

View File

@ -46,8 +46,10 @@ type Filter interface {
}
// InterpolationFunction return a Filter implementation
// that operates on an image
type InterpolationFunction func(image.Image) Filter
// that operates on an image. Two factors
// allow to scale the filter kernels in x- and y-direction
// to prevent moire patterns.
type InterpolationFunction func(image.Image, [2]float32) Filter
// Resize an image to new width and height using the interpolation function interp.
// A new image with the given dimensions will be returned.
@ -69,7 +71,7 @@ func Resize(width, height uint, img image.Image, interp InterpolationFunction) i
c := make(chan int, n)
for i := 0; i < n; i++ {
go func(b image.Rectangle, c chan int) {
filter := interp(img)
filter := interp(img, [2]float32{clampFactor(scaleX), clampFactor(scaleY)})
var u, v float32
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
@ -109,6 +111,16 @@ func calcFactors(width, height uint, oldWidth, oldHeight float32) (scaleX, scale
return
}
// Set filter scaling factor to avoid moire patterns.
// This is only useful in case of downscaling (factor>1).
func clampFactor(factor float32) (r float32) {
r = factor
if r < 1 {
r = 1
}
return
}
// Set number of parallel jobs
// but prevent resize from doing too much work
// if #CPUs > width

View File

@ -51,3 +51,13 @@ func Benchmark_BigResize(b *testing.B) {
}
m.At(0, 0)
}
func Benchmark_Reduction(b *testing.B) {
largeImg := image.NewRGBA(image.Rect(0, 0, 1000, 1000))
var m image.Image
for i := 0; i < b.N; i++ {
m = Resize(300, 300, largeImg, Lanczos3)
}
m.At(0, 0)
}