Speedup calculation by exploiting the separability of the resizing filter.
Should be ~5x faster! More optimization will follow. before: > go test -bench . PASS Benchmark_BigResizeLanczos3-4 1 2438137093 ns/op Benchmark_BigResizeLanczos3Lut-4 1 1157612362 ns/op Benchmark_Reduction-4 2 743950618 ns/op after: > go test -bench . PASS Benchmark_BigResizeLanczos3-4 5 403685685 ns/op Benchmark_BigResizeLanczos3Lut-4 10 225539497 ns/op Benchmark_Reduction-4 10 207004759 ns/op
This commit is contained in:
parent
4d25061069
commit
494d8de4e5
56
filters.go
56
filters.go
|
@ -42,13 +42,13 @@ type filterModel struct {
|
|||
|
||||
// instead of blurring an image before downscaling to avoid aliasing,
|
||||
// the filter is scaled by a factor which leads to a similar effect
|
||||
factor [2]float32
|
||||
factor float32
|
||||
|
||||
// for optimized access to image points
|
||||
converter
|
||||
|
||||
// temporaries used by Interpolate
|
||||
tempRow, tempCol []colorArray
|
||||
// temporary used by Interpolate
|
||||
tempRow []colorArray
|
||||
}
|
||||
|
||||
func (f *filterModel) convolution1d(x float32, p []colorArray, factor float32) colorArray {
|
||||
|
@ -72,20 +72,15 @@ func (f *filterModel) convolution1d(x float32, p []colorArray, factor float32) c
|
|||
return c
|
||||
}
|
||||
|
||||
func (f *filterModel) Interpolate(x, y float32) color.RGBA64 {
|
||||
xf, yf := int(x)-len(f.tempRow)/2+1, int(y)-len(f.tempCol)/2+1
|
||||
x -= float32(xf)
|
||||
y -= float32(yf)
|
||||
func (f *filterModel) Interpolate(u float32, y int) color.RGBA64 {
|
||||
uf := int(u) - len(f.tempRow)/2 + 1
|
||||
u -= float32(uf)
|
||||
|
||||
for i := range f.tempCol {
|
||||
for j := range f.tempRow {
|
||||
f.tempRow[j] = f.at(xf+j, yf+i)
|
||||
for i := range f.tempRow {
|
||||
f.tempRow[i] = f.at(uf+i, y)
|
||||
}
|
||||
|
||||
f.tempCol[i] = f.convolution1d(x, f.tempRow, f.factor[0])
|
||||
}
|
||||
|
||||
c := f.convolution1d(y, f.tempCol, f.factor[1])
|
||||
c := f.convolution1d(u, f.tempRow, f.factor)
|
||||
return color.RGBA64{
|
||||
clampToUint16(c[0]),
|
||||
clampToUint16(c[1]),
|
||||
|
@ -96,46 +91,45 @@ func (f *filterModel) Interpolate(x, y float32) color.RGBA64 {
|
|||
|
||||
// createFilter tries to find an optimized converter for the given input image
|
||||
// and initializes all filterModel members to their defaults
|
||||
func createFilter(img image.Image, factor [2]float32, size int, kernel func(float32) float32) (f Filter) {
|
||||
sizeX := size * (int(math.Ceil(float64(factor[0]))))
|
||||
sizeY := size * (int(math.Ceil(float64(factor[1]))))
|
||||
func createFilter(img image.Image, factor float32, size int, kernel func(float32) float32) (f Filter) {
|
||||
sizeX := size * (int(math.Ceil(float64(factor))))
|
||||
|
||||
switch img.(type) {
|
||||
default:
|
||||
f = &filterModel{
|
||||
kernel, factor,
|
||||
&genericConverter{img},
|
||||
make([]colorArray, sizeX), make([]colorArray, sizeY),
|
||||
make([]colorArray, sizeX),
|
||||
}
|
||||
case *image.RGBA:
|
||||
f = &filterModel{
|
||||
kernel, factor,
|
||||
&rgbaConverter{img.(*image.RGBA)},
|
||||
make([]colorArray, sizeX), make([]colorArray, sizeY),
|
||||
make([]colorArray, sizeX),
|
||||
}
|
||||
case *image.RGBA64:
|
||||
f = &filterModel{
|
||||
kernel, factor,
|
||||
&rgba64Converter{img.(*image.RGBA64)},
|
||||
make([]colorArray, sizeX), make([]colorArray, sizeY),
|
||||
make([]colorArray, sizeX),
|
||||
}
|
||||
case *image.Gray:
|
||||
f = &filterModel{
|
||||
kernel, factor,
|
||||
&grayConverter{img.(*image.Gray)},
|
||||
make([]colorArray, sizeX), make([]colorArray, sizeY),
|
||||
make([]colorArray, sizeX),
|
||||
}
|
||||
case *image.Gray16:
|
||||
f = &filterModel{
|
||||
kernel, factor,
|
||||
&gray16Converter{img.(*image.Gray16)},
|
||||
make([]colorArray, sizeX), make([]colorArray, sizeY),
|
||||
make([]colorArray, sizeX),
|
||||
}
|
||||
case *image.YCbCr:
|
||||
f = &filterModel{
|
||||
kernel, factor,
|
||||
&ycbcrConverter{img.(*image.YCbCr)},
|
||||
make([]colorArray, sizeX), make([]colorArray, sizeY),
|
||||
make([]colorArray, sizeX),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -172,7 +166,7 @@ func tableKernel(kernel func(float32) float32, tableSize int,
|
|||
}
|
||||
|
||||
// Nearest-neighbor interpolation
|
||||
func NearestNeighbor(img image.Image, factor [2]float32) Filter {
|
||||
func NearestNeighbor(img image.Image, factor float32) Filter {
|
||||
return createFilter(img, factor, 2, func(x float32) (y float32) {
|
||||
if x >= -0.5 && x < 0.5 {
|
||||
y = 1
|
||||
|
@ -185,7 +179,7 @@ func NearestNeighbor(img image.Image, factor [2]float32) Filter {
|
|||
}
|
||||
|
||||
// Bilinear interpolation
|
||||
func Bilinear(img image.Image, factor [2]float32) Filter {
|
||||
func Bilinear(img image.Image, factor float32) Filter {
|
||||
return createFilter(img, factor, 2, func(x float32) (y float32) {
|
||||
absX := float32(math.Abs(float64(x)))
|
||||
if absX <= 1 {
|
||||
|
@ -199,12 +193,12 @@ func Bilinear(img image.Image, factor [2]float32) Filter {
|
|||
}
|
||||
|
||||
// Bicubic interpolation (with cubic hermite spline)
|
||||
func Bicubic(img image.Image, factor [2]float32) Filter {
|
||||
func Bicubic(img image.Image, factor float32) Filter {
|
||||
return createFilter(img, factor, 4, splineKernel(0, 0.5))
|
||||
}
|
||||
|
||||
// Mitchell-Netravali interpolation
|
||||
func MitchellNetravali(img image.Image, factor [2]float32) Filter {
|
||||
func MitchellNetravali(img image.Image, factor float32) Filter {
|
||||
return createFilter(img, factor, 4, splineKernel(1.0/3.0, 1.0/3.0))
|
||||
}
|
||||
|
||||
|
@ -245,25 +239,25 @@ func lanczosKernel(a uint) func(float32) float32 {
|
|||
const lanczosTableSize = 300
|
||||
|
||||
// Lanczos interpolation (a=2)
|
||||
func Lanczos2(img image.Image, factor [2]float32) Filter {
|
||||
func Lanczos2(img image.Image, factor float32) Filter {
|
||||
return createFilter(img, factor, 4, lanczosKernel(2))
|
||||
}
|
||||
|
||||
// Lanczos interpolation (a=2) using a look-up table
|
||||
// to speed up computation
|
||||
func Lanczos2Lut(img image.Image, factor [2]float32) Filter {
|
||||
func Lanczos2Lut(img image.Image, factor float32) Filter {
|
||||
return createFilter(img, factor, 4,
|
||||
tableKernel(lanczosKernel(2), lanczosTableSize, 2.0))
|
||||
}
|
||||
|
||||
// Lanczos interpolation (a=3)
|
||||
func Lanczos3(img image.Image, factor [2]float32) Filter {
|
||||
func Lanczos3(img image.Image, factor float32) Filter {
|
||||
return createFilter(img, factor, 6, lanczosKernel(3))
|
||||
}
|
||||
|
||||
// Lanczos interpolation (a=3) using a look-up table
|
||||
// to speed up computation
|
||||
func Lanczos3Lut(img image.Image, factor [2]float32) Filter {
|
||||
func Lanczos3Lut(img image.Image, factor float32) Filter {
|
||||
return createFilter(img, factor, 6,
|
||||
tableKernel(lanczosKernel(3), lanczosTableSize, 3.0))
|
||||
}
|
||||
|
|
63
resize.go
63
resize.go
|
@ -42,14 +42,14 @@ func (t *Trans2) Eval(x, y float32) (u, v float32) {
|
|||
|
||||
// Filter can interpolate at points (x,y)
|
||||
type Filter interface {
|
||||
Interpolate(x, y float32) color.RGBA64
|
||||
Interpolate(u float32, y int) color.RGBA64
|
||||
}
|
||||
|
||||
// InterpolationFunction return a Filter implementation
|
||||
// that operates on an image. Two factors
|
||||
// allow to scale the filter kernels in x- and y-direction
|
||||
// to prevent moire patterns.
|
||||
type InterpolationFunction func(image.Image, [2]float32) Filter
|
||||
type InterpolationFunction func(image.Image, float32) Filter
|
||||
|
||||
// Resize an image to new width and height using the interpolation function interp.
|
||||
// A new image with the given dimensions will be returned.
|
||||
|
@ -64,24 +64,26 @@ func Resize(width, height uint, img image.Image, interp InterpolationFunction) i
|
|||
scaleX, scaleY := calcFactors(width, height, oldWidth, oldHeight)
|
||||
t := Trans2{scaleX, 0, float32(oldBounds.Min.X), 0, scaleY, float32(oldBounds.Min.Y)}
|
||||
|
||||
resizedImg := image.NewRGBA64(image.Rect(0, 0, int(0.7+oldWidth/scaleX), int(0.7+oldHeight/scaleY)))
|
||||
//resizedImg := image.NewRGBA64(image.Rect(0, 0, int(0.7+oldWidth/scaleX), int(0.7+oldHeight/scaleY)))
|
||||
resizedImg := image.NewRGBA64(image.Rect(0, 0, oldBounds.Dy(), int(0.7+oldWidth/scaleX)))
|
||||
b := resizedImg.Bounds()
|
||||
adjustX := 0.5 * ((oldWidth-1.0)/scaleX - float32(b.Dx()-1))
|
||||
adjustY := 0.5 * ((oldHeight-1.0)/scaleY - float32(b.Dy()-1))
|
||||
adjustX := 0.5 * ((oldWidth-1.0)/scaleX - float32(b.Dy()-1))
|
||||
//adjustY := 0.5 * ((oldHeight-1.0)/scaleY - float32(b.Dy()-1))
|
||||
|
||||
n := numJobs(b.Dy())
|
||||
c := make(chan int, n)
|
||||
for i := 0; i < n; i++ {
|
||||
go func(b image.Rectangle, c chan int) {
|
||||
filter := interp(img, [2]float32{clampFactor(scaleX), clampFactor(scaleY)})
|
||||
var u, v float32
|
||||
filter := interp(img, float32(clampFactor(scaleX)))
|
||||
var u float32
|
||||
var color color.RGBA64
|
||||
for y := b.Min.Y; y < b.Max.Y; y++ {
|
||||
for x := b.Min.X; x < b.Max.X; x++ {
|
||||
u, v = t.Eval(float32(x)+adjustX, float32(y)+adjustY)
|
||||
color = filter.Interpolate(u, v)
|
||||
for y := b.Min.X; y < b.Max.X; y++ {
|
||||
for x := b.Min.Y; x < b.Max.Y; x++ {
|
||||
u = t[0]*(float32(x)+adjustX) + t[2]
|
||||
|
||||
i := resizedImg.PixOffset(x, y)
|
||||
color = filter.Interpolate(u, y)
|
||||
|
||||
i := resizedImg.PixOffset(y, x)
|
||||
resizedImg.Pix[i+0] = uint8(color.R >> 8)
|
||||
resizedImg.Pix[i+1] = uint8(color.R)
|
||||
resizedImg.Pix[i+2] = uint8(color.G >> 8)
|
||||
|
@ -100,7 +102,42 @@ func Resize(width, height uint, img image.Image, interp InterpolationFunction) i
|
|||
<-c
|
||||
}
|
||||
|
||||
return resizedImg
|
||||
resultImg := image.NewRGBA64(image.Rect(0, 0, int(0.7+oldWidth/scaleX), int(0.7+oldHeight/scaleY)))
|
||||
b = resultImg.Bounds()
|
||||
adjustX = 0.5 * ((oldWidth-1.0)/scaleX - float32(b.Dx()-1))
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
go func(b image.Rectangle, c chan int) {
|
||||
filter := interp(resizedImg, float32(clampFactor(scaleY)))
|
||||
var u float32
|
||||
var color color.RGBA64
|
||||
for y := b.Min.X; y < b.Max.X; y++ {
|
||||
for x := b.Min.Y; x < b.Max.Y; x++ {
|
||||
u = t[4]*(float32(x)+adjustX) + t[5]
|
||||
|
||||
color = filter.Interpolate(u, y)
|
||||
|
||||
i := resultImg.PixOffset(y, x)
|
||||
resultImg.Pix[i+0] = uint8(color.R >> 8)
|
||||
resultImg.Pix[i+1] = uint8(color.R)
|
||||
resultImg.Pix[i+2] = uint8(color.G >> 8)
|
||||
resultImg.Pix[i+3] = uint8(color.G)
|
||||
resultImg.Pix[i+4] = uint8(color.B >> 8)
|
||||
resultImg.Pix[i+5] = uint8(color.B)
|
||||
resultImg.Pix[i+6] = uint8(color.A >> 8)
|
||||
resultImg.Pix[i+7] = uint8(color.A)
|
||||
}
|
||||
}
|
||||
c <- 1
|
||||
}(image.Rect(b.Min.X, b.Min.Y+i*(b.Dy())/n, b.Max.X, b.Min.Y+(i+1)*(b.Dy())/n), c)
|
||||
|
||||
}
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
<-c
|
||||
}
|
||||
|
||||
return resultImg
|
||||
}
|
||||
|
||||
// Calculate scaling factors using old and new image dimensions.
|
||||
|
|
Loading…
Reference in New Issue
Block a user