Optimize data-locality for a huge increase in processing speed.

This is a complete rewrite! The tight scaling loop needs data locality for optimal performance. The old version used lots of pointer redirections to access image data which was bad for data locality. By providing the complete loop for each image type, this problem is solved. Unfortunately this increases code duplication but the result should be worth it: I could measure a ~6x speed-up for certain test cases!
This commit is contained in:
jst 2014-07-19 13:19:31 +02:00
parent bdfbbead13
commit 016a61cd31
6 changed files with 546 additions and 467 deletions

View File

@ -21,110 +21,236 @@ import (
"image/color"
)
type colorArray [4]float32
func replicateBorder1d(x, min, max int) int {
if x < min {
x = min
} else if x >= max {
x = max - 1
// Keep value in [0,255] range.
func clampUint8(in int32) uint8 {
if in < 0 {
return 0
}
return x
if in > 255 {
return 255
}
return uint8(in)
}
func replicateBorder(x, y int, rect image.Rectangle) (xx, yy int) {
xx = replicateBorder1d(x, rect.Min.X, rect.Max.X)
yy = replicateBorder1d(y, rect.Min.Y, rect.Max.Y)
return
// Keep value in [0,65535] range.
func clampUint16(in int64) uint16 {
if in < 0 {
return 0
}
if in > 65535 {
return 65535
}
return uint16(in)
}
// converter allows to retrieve a colorArray for points of an image.
// the idea is to speed up computation by providing optimized implementations
// for different image types instead of relying on image.Image.At().
type converter interface {
at(x, y int, color *colorArray)
func resizeGeneric(in image.Image, out *image.RGBA64, scale float64, coeffs []int32, filterLength int) {
oldBounds := in.Bounds()
newBounds := out.Bounds()
for x := newBounds.Min.X; x < newBounds.Max.X; x++ {
for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ {
interpX := scale*(float64(y)+0.5) + float64(oldBounds.Min.X)
start := int(interpX) - filterLength/2 + 1
var rgba [4]int64
var sum int64
for i := 0; i < filterLength; i++ {
xx := start + i
if xx < oldBounds.Min.X {
xx = oldBounds.Min.X
} else if xx >= oldBounds.Max.X {
xx = oldBounds.Max.X - 1
}
coeff := coeffs[(y-newBounds.Min.Y)*filterLength+i]
r, g, b, a := in.At(xx, x).RGBA()
rgba[0] += int64(coeff) * int64(r)
rgba[1] += int64(coeff) * int64(g)
rgba[2] += int64(coeff) * int64(b)
rgba[3] += int64(coeff) * int64(a)
sum += int64(coeff)
}
offset := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*8
value := clampUint16(rgba[0] / sum)
out.Pix[offset+0] = uint8(value >> 8)
out.Pix[offset+1] = uint8(value)
value = clampUint16(rgba[1] / sum)
out.Pix[offset+2] = uint8(value >> 8)
out.Pix[offset+3] = uint8(value)
value = clampUint16(rgba[2] / sum)
out.Pix[offset+4] = uint8(value >> 8)
out.Pix[offset+5] = uint8(value)
value = clampUint16(rgba[3] / sum)
out.Pix[offset+6] = uint8(value >> 8)
out.Pix[offset+7] = uint8(value)
}
}
}
type genericConverter struct {
src image.Image
func resizeRGBA(in *image.RGBA, out *image.RGBA, scale float64, coeffs []int16, filterLength int) {
oldBounds := in.Bounds()
newBounds := out.Bounds()
for x := newBounds.Min.X; x < newBounds.Max.X; x++ {
row := in.Pix[(x-oldBounds.Min.Y)*in.Stride:]
for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ {
interpX := scale*(float64(y)+0.5) + float64(oldBounds.Min.X)
start := int(interpX) - filterLength/2 + 1
var rgba [4]int32
var sum int32
for i := 0; i < filterLength; i++ {
xx := start + i
if xx < oldBounds.Min.X {
xx = oldBounds.Min.X
} else if xx >= oldBounds.Max.X {
xx = oldBounds.Max.X - 1
}
coeff := coeffs[(y-newBounds.Min.Y)*filterLength+i]
offset := (xx - oldBounds.Min.X) * 4
rgba[0] += int32(coeff) * int32(row[offset+0])
rgba[1] += int32(coeff) * int32(row[offset+1])
rgba[2] += int32(coeff) * int32(row[offset+2])
rgba[3] += int32(coeff) * int32(row[offset+3])
sum += int32(coeff)
}
offset := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*4
out.Pix[offset+0] = clampUint8(rgba[0] / sum)
out.Pix[offset+1] = clampUint8(rgba[1] / sum)
out.Pix[offset+2] = clampUint8(rgba[2] / sum)
out.Pix[offset+3] = clampUint8(rgba[3] / sum)
}
}
}
func (c *genericConverter) at(x, y int, result *colorArray) {
r, g, b, a := c.src.At(replicateBorder(x, y, c.src.Bounds())).RGBA()
result[0] = float32(r)
result[1] = float32(g)
result[2] = float32(b)
result[3] = float32(a)
return
func resizeRGBA64(in *image.RGBA64, out *image.RGBA64, scale float64, coeffs []int32, filterLength int) {
oldBounds := in.Bounds()
newBounds := out.Bounds()
for x := newBounds.Min.X; x < newBounds.Max.X; x++ {
row := in.Pix[(x-oldBounds.Min.Y)*in.Stride:]
for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ {
interpX := scale*(float64(y)+0.5) + float64(oldBounds.Min.X)
start := int(interpX) - filterLength/2 + 1
var rgba [4]int64
var sum int64
for i := 0; i < filterLength; i++ {
xx := start + i
if xx < oldBounds.Min.X {
xx = oldBounds.Min.X
} else if xx >= oldBounds.Max.X {
xx = oldBounds.Max.X - 1
}
coeff := coeffs[(y-newBounds.Min.Y)*filterLength+i]
offset := (xx - oldBounds.Min.X) * 8
rgba[0] += int64(coeff) * int64(uint16(row[offset+0])<<8|uint16(row[offset+1]))
rgba[1] += int64(coeff) * int64(uint16(row[offset+2])<<8|uint16(row[offset+3]))
rgba[2] += int64(coeff) * int64(uint16(row[offset+4])<<8|uint16(row[offset+5]))
rgba[3] += int64(coeff) * int64(uint16(row[offset+6])<<8|uint16(row[offset+7]))
sum += int64(coeff)
}
offset := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*8
value := clampUint16(rgba[0] / sum)
out.Pix[offset+0] = uint8(value >> 8)
out.Pix[offset+1] = uint8(value)
value = clampUint16(rgba[1] / sum)
out.Pix[offset+2] = uint8(value >> 8)
out.Pix[offset+3] = uint8(value)
value = clampUint16(rgba[2] / sum)
out.Pix[offset+4] = uint8(value >> 8)
out.Pix[offset+5] = uint8(value)
value = clampUint16(rgba[3] / sum)
out.Pix[offset+6] = uint8(value >> 8)
out.Pix[offset+7] = uint8(value)
}
}
}
type rgbaConverter struct {
src *image.RGBA
func resizeGray(in *image.Gray, out *image.Gray, scale float64, coeffs []int16, filterLength int) {
oldBounds := in.Bounds()
newBounds := out.Bounds()
for x := newBounds.Min.X; x < newBounds.Max.X; x++ {
row := in.Pix[(x-oldBounds.Min.Y)*in.Stride:]
for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ {
interpX := scale*(float64(y)+0.5) + float64(oldBounds.Min.X)
start := int(interpX) - filterLength/2 + 1
var gray int32
var sum int32
for i := 0; i < filterLength; i++ {
xx := start + i
if xx < oldBounds.Min.X {
xx = oldBounds.Min.X
} else if xx >= oldBounds.Max.X {
xx = oldBounds.Max.X - 1
}
coeff := coeffs[(y-newBounds.Min.Y)*filterLength+i]
offset := (xx - oldBounds.Min.X)
gray += int32(coeff) * int32(row[offset])
sum += int32(coeff)
}
offset := (y-newBounds.Min.Y)*out.Stride + (x - newBounds.Min.X)
out.Pix[offset] = clampUint8(gray / sum)
}
}
}
func (c *rgbaConverter) at(x, y int, result *colorArray) {
i := c.src.PixOffset(replicateBorder(x, y, c.src.Rect))
result[0] = float32(uint16(c.src.Pix[i+0])<<8 | uint16(c.src.Pix[i+0]))
result[1] = float32(uint16(c.src.Pix[i+1])<<8 | uint16(c.src.Pix[i+1]))
result[2] = float32(uint16(c.src.Pix[i+2])<<8 | uint16(c.src.Pix[i+2]))
result[3] = float32(uint16(c.src.Pix[i+3])<<8 | uint16(c.src.Pix[i+3]))
return
func resizeGray16(in *image.Gray16, out *image.Gray16, scale float64, coeffs []int32, filterLength int) {
oldBounds := in.Bounds()
newBounds := out.Bounds()
for x := newBounds.Min.X; x < newBounds.Max.X; x++ {
row := in.Pix[(x-oldBounds.Min.Y)*in.Stride:]
for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ {
interpX := scale*(float64(y)+0.5) + float64(oldBounds.Min.X)
start := int(interpX) - filterLength/2 + 1
var gray int64
var sum int64
for i := 0; i < filterLength; i++ {
xx := start + i
if xx < oldBounds.Min.X {
xx = oldBounds.Min.X
} else if xx >= oldBounds.Max.X {
xx = oldBounds.Max.X - 1
}
coeff := coeffs[(y-newBounds.Min.Y)*filterLength+i]
offset := (xx - oldBounds.Min.X) * 2
gray += int64(coeff) * int64(uint16(row[offset+0])<<8|uint16(row[offset+1]))
sum += int64(coeff)
}
offset := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*2
value := clampUint16(gray / sum)
out.Pix[offset+0] = uint8(value >> 8)
out.Pix[offset+1] = uint8(value)
}
}
}
type rgba64Converter struct {
src *image.RGBA64
}
func (c *rgba64Converter) at(x, y int, result *colorArray) {
i := c.src.PixOffset(replicateBorder(x, y, c.src.Rect))
result[0] = float32(uint16(c.src.Pix[i+0])<<8 | uint16(c.src.Pix[i+1]))
result[1] = float32(uint16(c.src.Pix[i+2])<<8 | uint16(c.src.Pix[i+3]))
result[2] = float32(uint16(c.src.Pix[i+4])<<8 | uint16(c.src.Pix[i+5]))
result[3] = float32(uint16(c.src.Pix[i+6])<<8 | uint16(c.src.Pix[i+7]))
return
}
type grayConverter struct {
src *image.Gray
}
func (c *grayConverter) at(x, y int, result *colorArray) {
i := c.src.PixOffset(replicateBorder(x, y, c.src.Rect))
g := float32(uint16(c.src.Pix[i])<<8 | uint16(c.src.Pix[i]))
result[0] = g
result[1] = g
result[2] = g
result[3] = float32(0xffff)
return
}
type gray16Converter struct {
src *image.Gray16
}
func (c *gray16Converter) at(x, y int, result *colorArray) {
i := c.src.PixOffset(replicateBorder(x, y, c.src.Rect))
g := float32(uint16(c.src.Pix[i+0])<<8 | uint16(c.src.Pix[i+1]))
result[0] = g
result[1] = g
result[2] = g
result[3] = float32(0xffff)
return
}
type ycbcrConverter struct {
src *image.YCbCr
}
func (c *ycbcrConverter) at(x, y int, result *colorArray) {
xx, yy := replicateBorder(x, y, c.src.Rect)
yi := c.src.YOffset(xx, yy)
ci := c.src.COffset(xx, yy)
r, g, b := color.YCbCrToRGB(c.src.Y[yi], c.src.Cb[ci], c.src.Cr[ci])
result[0] = float32(uint16(r) * 0x101)
result[1] = float32(uint16(g) * 0x101)
result[2] = float32(uint16(b) * 0x101)
result[3] = float32(0xffff)
return
func convertYCbCrToRGBA(in *image.YCbCr) *image.RGBA {
out := image.NewRGBA(in.Bounds())
for y := 0; y < out.Bounds().Dy(); y++ {
for x := 0; x < out.Bounds().Dx(); x++ {
p := out.Pix[y*out.Stride+4*x:]
yi := in.YOffset(x, y)
ci := in.COffset(x, y)
r, g, b := color.YCbCrToRGB(in.Y[yi], in.Cb[ci], in.Cr[ci])
p[0] = r
p[1] = g
p[2] = b
p[3] = 0xff
}
}
return out
}

View File

@ -17,222 +17,100 @@ THIS SOFTWARE.
package resize
import (
"image"
"image/color"
"math"
)
// restrict an input float32 to the range of uint16 values
func clampToUint16(x float32) (y uint16) {
y = uint16(x)
if x < 0 {
y = 0
} else if x > float32(0xfffe) {
// "else if x > float32(0xffff)" will cause overflows!
y = 0xffff
func nearest(in float64) float64 {
if in >= -0.5 && in < 0.5 {
return 1
}
return
return 0
}
// describe a resampling filter
type filterModel struct {
// resampling is done by convolution with a (scaled) kernel
kernel func(float32) float32
// instead of blurring an image before downscaling to avoid aliasing,
// the filter is scaled by a factor which leads to a similar effect
factorInv float32
// for optimized access to image points
converter
// temporary used by Interpolate
tempRow []colorArray
kernelWeight []float32
weightSum float32
}
func (f *filterModel) SetKernelWeights(u float32) {
uf := int(u) - len(f.tempRow)/2 + 1
u -= float32(uf)
f.weightSum = 0
for j := range f.tempRow {
f.kernelWeight[j] = f.kernel((u - float32(j)) * f.factorInv)
f.weightSum += f.kernelWeight[j]
func linear(in float64) float64 {
in = math.Abs(in)
if in <= 1 {
return 1 - in
}
return 0
}
func (f *filterModel) convolution1d() (c colorArray) {
for j := range f.tempRow {
for i := range c {
c[i] += f.tempRow[j][i] * f.kernelWeight[j]
func cubic(in float64) float64 {
in = math.Abs(in)
if in <= 1 {
return in*in*(1.5*in-2.5) + 1.0
}
if in <= 2 {
return in*(in*(2.5-0.5*in)-4.0) + 2.0
}
return 0
}
func mitchellnetravali(in float64) float64 {
in = math.Abs(in)
if in <= 1 {
return (7.0*in*in*in - 12.0*in*in + 5.33333333333) * 0.16666666666
}
if in <= 2 {
return (-2.33333333333*in*in*in + 12.0*in*in - 20.0*in + 10.6666666667) * 0.16666666666
}
return 0
}
func sinc(x float64) float64 {
x = math.Abs(x) * math.Pi
if x >= 1.220703e-4 {
return math.Sin(x) / x
}
return 1
}
func lanczos2(in float64) float64 {
if in > -2 && in < 2 {
return sinc(in) * sinc(in*0.5)
}
return 0
}
func lanczos3(in float64) float64 {
if in > -3 && in < 3 {
return sinc(in) * sinc(in*0.3333333333333333)
}
return 0
}
// range [-256,256]
func createWeights8(dy, minx, filterLength int, blur, scale float64, kernel func(float64) float64) ([]int16, int) {
filterLength = filterLength * int(math.Max(math.Ceil(blur*scale), 1))
filterFactor := math.Min(1./(blur*scale), 1)
coeffs := make([]int16, dy*filterLength)
for y := 0; y < dy; y++ {
interpX := scale*(float64(y)+0.5) + float64(minx)
start := int(interpX) - filterLength/2 + 1
for i := 0; i < filterLength; i++ {
in := (interpX - float64(start) - float64(i)) * filterFactor
coeffs[y*filterLength+i] = int16(kernel(in) * 256)
}
}
// normalize values
for i := range c {
c[i] = c[i] / f.weightSum
}
return
return coeffs, filterLength
}
func (f *filterModel) Interpolate(u float32, y int) color.RGBA64 {
uf := int(u) - len(f.tempRow)/2 + 1
u -= float32(uf)
// range [-65536,65536]
func createWeights16(dy, minx, filterLength int, blur, scale float64, kernel func(float64) float64) ([]int32, int) {
filterLength = filterLength * int(math.Max(math.Ceil(blur*scale), 1))
filterFactor := math.Min(1./(blur*scale), 1)
for i := range f.tempRow {
f.at(uf+i, y, &f.tempRow[i])
}
c := f.convolution1d()
return color.RGBA64{
clampToUint16(c[0]),
clampToUint16(c[1]),
clampToUint16(c[2]),
clampToUint16(c[3]),
}
}
// createFilter tries to find an optimized converter for the given input image
// and initializes all filterModel members to their defaults
func createFilter(img image.Image, factor float32, size int, kernel func(float32) float32) (f Filter) {
sizeX := size * (int(math.Ceil(float64(factor))))
switch img.(type) {
default:
f = &filterModel{
kernel, 1. / factor,
&genericConverter{img},
make([]colorArray, sizeX),
make([]float32, sizeX),
0,
}
case *image.RGBA:
f = &filterModel{
kernel, 1. / factor,
&rgbaConverter{img.(*image.RGBA)},
make([]colorArray, sizeX),
make([]float32, sizeX),
0,
}
case *image.RGBA64:
f = &filterModel{
kernel, 1. / factor,
&rgba64Converter{img.(*image.RGBA64)},
make([]colorArray, sizeX),
make([]float32, sizeX),
0,
}
case *image.Gray:
f = &filterModel{
kernel, 1. / factor,
&grayConverter{img.(*image.Gray)},
make([]colorArray, sizeX),
make([]float32, sizeX),
0,
}
case *image.Gray16:
f = &filterModel{
kernel, 1. / factor,
&gray16Converter{img.(*image.Gray16)},
make([]colorArray, sizeX),
make([]float32, sizeX),
0,
}
case *image.YCbCr:
f = &filterModel{
kernel, 1. / factor,
&ycbcrConverter{img.(*image.YCbCr)},
make([]colorArray, sizeX),
make([]float32, sizeX),
0,
coeffs := make([]int32, dy*filterLength)
for y := 0; y < dy; y++ {
interpX := scale*(float64(y)+0.5) + float64(minx)
start := int(interpX) - filterLength/2 + 1
for i := 0; i < filterLength; i++ {
in := (interpX - float64(start) - float64(i)) * filterFactor
coeffs[y*filterLength+i] = int32(kernel(in) * 65536)
}
}
return
}
// Nearest-neighbor interpolation
func NearestNeighbor(img image.Image, factor float32) Filter {
return createFilter(img, factor, 2, func(x float32) (y float32) {
if x >= -0.5 && x < 0.5 {
y = 1
} else {
y = 0
}
return
})
}
// Bilinear interpolation
func Bilinear(img image.Image, factor float32) Filter {
return createFilter(img, factor, 2, func(x float32) (y float32) {
absX := float32(math.Abs(float64(x)))
if absX <= 1 {
y = 1 - absX
} else {
y = 0
}
return
})
}
// Bicubic interpolation (with cubic hermite spline)
func Bicubic(img image.Image, factor float32) Filter {
return createFilter(img, factor, 4, splineKernel(0, 0.5))
}
// Mitchell-Netravali interpolation
func MitchellNetravali(img image.Image, factor float32) Filter {
return createFilter(img, factor, 4, splineKernel(1.0/3.0, 1.0/3.0))
}
func splineKernel(B, C float32) func(float32) float32 {
factorA := 2.0 - 1.5*B - C
factorB := -3.0 + 2.0*B + C
factorC := 1.0 - 1.0/3.0*B
factorD := -B/6.0 - C
factorE := B + 5.0*C
factorF := -2.0*B - 8.0*C
factorG := 4.0/3.0*B + 4.0*C
return func(x float32) (y float32) {
absX := float32(math.Abs(float64(x)))
if absX <= 1 {
y = absX*absX*(factorA*absX+factorB) + factorC
} else if absX <= 2 {
y = absX*(absX*(absX*factorD+factorE)+factorF) + factorG
} else {
y = 0
}
return
}
}
func lanczosKernel(a uint) func(float32) float32 {
return func(x float32) (y float32) {
if x > -float32(a) && x < float32(a) {
y = float32(Sinc(float64(x))) * float32(Sinc(float64(x/float32(a))))
} else {
y = 0
}
return
}
}
// Lanczos interpolation (a=2)
func Lanczos2(img image.Image, factor float32) Filter {
return createFilter(img, factor, 4, lanczosKernel(2))
}
// Lanczos interpolation (a=3)
func Lanczos3(img image.Image, factor float32) Filter {
return createFilter(img, factor, 6, lanczosKernel(3))
return coeffs, filterLength
}

315
resize.go
View File

@ -26,124 +26,275 @@ package resize
import (
"image"
"image/color"
"runtime"
"sync"
)
// Filter can interpolate at points (x,y)
type Filter interface {
SetKernelWeights(u float32)
Interpolate(u float32, y int) color.RGBA64
// An InterpolationFunction provides the parameters that describe an
// interpolation kernel. It returns the number of samples to take
// and the kernel function to use for sampling.
type InterpolationFunction func() (int, func(float64) float64)
// Nearest-neighbor interpolation
func NearestNeighbor() (int, func(float64) float64) {
return 2, nearest
}
// InterpolationFunction return a Filter implementation
// that operates on an image. Two factors
// allow to scale the filter kernels in x- and y-direction
// to prevent moire patterns.
type InterpolationFunction func(image.Image, float32) Filter
// Bilinear interpolation
func Bilinear() (int, func(float64) float64) {
return 2, linear
}
// Resize an image to new width and height using the interpolation function interp.
// Bicubic interpolation (with cubic hermite spline)
func Bicubic() (int, func(float64) float64) {
return 4, cubic
}
// Mitchell-Netravali interpolation
func MitchellNetravali() (int, func(float64) float64) {
return 4, mitchellnetravali
}
// Lanczos interpolation (a=2)
func Lanczos2() (int, func(float64) float64) {
return 4, lanczos2
}
// Lanczos interpolation (a=3)
func Lanczos3() (int, func(float64) float64) {
return 6, lanczos3
}
// values <1 will sharpen the image
var blur = 1.0
// Resize scales an image to new width and height using the interpolation function interp.
// A new image with the given dimensions will be returned.
// If one of the parameters width or height is set to 0, its size will be calculated so that
// the aspect ratio is that of the originating image.
// The resizing algorithm uses channels for parallel computation.
func Resize(width, height uint, img image.Image, interp InterpolationFunction) image.Image {
oldBounds := img.Bounds()
oldWidth := float32(oldBounds.Dx())
oldHeight := float32(oldBounds.Dy())
scaleX, scaleY := calcFactors(width, height, oldWidth, oldHeight)
tempImg := image.NewRGBA64(image.Rect(0, 0, oldBounds.Dy(), int(0.7+oldWidth/scaleX)))
b := tempImg.Bounds()
adjust := 0.5 * ((oldWidth-1.0)/scaleX - float32(b.Dy()-1))
n := numJobs(b.Dy())
c := make(chan int, n)
for i := 0; i < n; i++ {
slice := image.Rect(b.Min.X, b.Min.Y+i*(b.Dy())/n, b.Max.X, b.Min.Y+(i+1)*(b.Dy())/n)
go resizeSlice(img, tempImg, interp, scaleX, adjust, float32(oldBounds.Min.X), oldBounds.Min.Y, slice, c)
scaleX, scaleY := calcFactors(width, height, float64(img.Bounds().Dx()), float64(img.Bounds().Dy()))
if width == 0 {
width = uint(0.7 + float64(img.Bounds().Dx())/scaleX)
}
for i := 0; i < n; i++ {
<-c
if height == 0 {
height = uint(0.7 + float64(img.Bounds().Dy())/scaleY)
}
resultImg := image.NewRGBA64(image.Rect(0, 0, int(0.7+oldWidth/scaleX), int(0.7+oldHeight/scaleY)))
b = resultImg.Bounds()
adjust = 0.5 * ((oldHeight-1.0)/scaleY - float32(b.Dy()-1))
taps, kernel := interp()
cpus := runtime.NumCPU()
wg := sync.WaitGroup{}
for i := 0; i < n; i++ {
slice := image.Rect(b.Min.X, b.Min.Y+i*(b.Dy())/n, b.Max.X, b.Min.Y+(i+1)*(b.Dy())/n)
go resizeSlice(tempImg, resultImg, interp, scaleY, adjust, 0, 0, slice, c)
}
for i := 0; i < n; i++ {
<-c
}
// Generic access to image.Image is slow in tight loops.
// The optimal access has to be determined from the concrete image type.
switch input := img.(type) {
case *image.RGBA:
// 8-bit precision
temp := image.NewRGBA(image.Rect(0, 0, input.Bounds().Dy(), int(width)))
result := image.NewRGBA(image.Rect(0, 0, int(width), int(height)))
return resultImg
}
// Resize a rectangle image slice
func resizeSlice(input image.Image, output *image.RGBA64, interp InterpolationFunction, scale, adjust, xoffset float32, yoffset int, slice image.Rectangle, c chan int) {
filter := interp(input, float32(clampFactor(scale)))
var u float32
var color color.RGBA64
for y := slice.Min.Y; y < slice.Max.Y; y++ {
u = scale*(float32(y)+adjust) + xoffset
filter.SetKernelWeights(u)
for x := slice.Min.X; x < slice.Max.X; x++ {
color = filter.Interpolate(u, x+yoffset)
i := output.PixOffset(x, y)
output.Pix[i+0] = uint8(color.R >> 8)
output.Pix[i+1] = uint8(color.R)
output.Pix[i+2] = uint8(color.G >> 8)
output.Pix[i+3] = uint8(color.G)
output.Pix[i+4] = uint8(color.B >> 8)
output.Pix[i+5] = uint8(color.B)
output.Pix[i+6] = uint8(color.A >> 8)
output.Pix[i+7] = uint8(color.A)
// horizontal filter, results in transposed temporary image
coeffs, filterLength := createWeights8(temp.Bounds().Dy(), input.Bounds().Min.X, taps, blur, scaleX, kernel)
wg.Add(cpus)
for i := 0; i < cpus; i++ {
slice := makeSlice(temp, i, cpus).(*image.RGBA)
go func() {
defer wg.Done()
resizeRGBA(input, slice, scaleX, coeffs, filterLength)
}()
}
}
wg.Wait()
c <- 1
// horizontal filter on transposed image, result is not transposed
coeffs, filterLength = createWeights8(result.Bounds().Dy(), temp.Bounds().Min.X, taps, blur, scaleY, kernel)
wg.Add(cpus)
for i := 0; i < cpus; i++ {
slice := makeSlice(result, i, cpus).(*image.RGBA)
go func() {
defer wg.Done()
resizeRGBA(temp, slice, scaleY, coeffs, filterLength)
}()
}
wg.Wait()
return result
case *image.YCbCr:
// 8-bit precision
// accessing the YCbCr arrays in a tight loop is slow.
// converting the image before filtering will improve performance.
inputAsRGBA := convertYCbCrToRGBA(input)
temp := image.NewRGBA(image.Rect(0, 0, input.Bounds().Dy(), int(width)))
result := image.NewRGBA(image.Rect(0, 0, int(width), int(height)))
// horizontal filter, results in transposed temporary image
coeffs, filterLength := createWeights8(temp.Bounds().Dy(), input.Bounds().Min.X, taps, blur, scaleX, kernel)
wg.Add(cpus)
for i := 0; i < cpus; i++ {
slice := makeSlice(temp, i, cpus).(*image.RGBA)
go func() {
defer wg.Done()
resizeRGBA(inputAsRGBA, slice, scaleX, coeffs, filterLength)
}()
}
wg.Wait()
// horizontal filter on transposed image, result is not transposed
coeffs, filterLength = createWeights8(result.Bounds().Dy(), temp.Bounds().Min.X, taps, blur, scaleY, kernel)
wg.Add(cpus)
for i := 0; i < cpus; i++ {
slice := makeSlice(result, i, cpus).(*image.RGBA)
go func() {
defer wg.Done()
resizeRGBA(temp, slice, scaleY, coeffs, filterLength)
}()
}
wg.Wait()
return result
case *image.RGBA64:
// 16-bit precision
temp := image.NewRGBA64(image.Rect(0, 0, input.Bounds().Dy(), int(width)))
result := image.NewRGBA64(image.Rect(0, 0, int(width), int(height)))
// horizontal filter, results in transposed temporary image
coeffs, filterLength := createWeights16(temp.Bounds().Dy(), input.Bounds().Min.X, taps, blur, scaleX, kernel)
wg.Add(cpus)
for i := 0; i < cpus; i++ {
slice := makeSlice(temp, i, cpus).(*image.RGBA64)
go func() {
defer wg.Done()
resizeRGBA64(input, slice, scaleX, coeffs, filterLength)
}()
}
wg.Wait()
// horizontal filter on transposed image, result is not transposed
coeffs, filterLength = createWeights16(result.Bounds().Dy(), temp.Bounds().Min.X, taps, blur, scaleY, kernel)
wg.Add(cpus)
for i := 0; i < cpus; i++ {
slice := makeSlice(result, i, cpus).(*image.RGBA64)
go func() {
defer wg.Done()
resizeGeneric(temp, slice, scaleY, coeffs, filterLength)
}()
}
wg.Wait()
return result
case *image.Gray:
// 8-bit precision
temp := image.NewGray(image.Rect(0, 0, input.Bounds().Dy(), int(width)))
result := image.NewGray(image.Rect(0, 0, int(width), int(height)))
// horizontal filter, results in transposed temporary image
coeffs, filterLength := createWeights8(temp.Bounds().Dy(), input.Bounds().Min.X, taps, blur, scaleX, kernel)
wg.Add(cpus)
for i := 0; i < cpus; i++ {
slice := makeSlice(temp, i, cpus).(*image.Gray)
go func() {
defer wg.Done()
resizeGray(input, slice, scaleX, coeffs, filterLength)
}()
}
wg.Wait()
// horizontal filter on transposed image, result is not transposed
coeffs, filterLength = createWeights8(result.Bounds().Dy(), temp.Bounds().Min.X, taps, blur, scaleY, kernel)
wg.Add(cpus)
for i := 0; i < cpus; i++ {
slice := makeSlice(result, i, cpus).(*image.Gray)
go func() {
defer wg.Done()
resizeGray(temp, slice, scaleY, coeffs, filterLength)
}()
}
wg.Wait()
return result
case *image.Gray16:
// 16-bit precision
temp := image.NewGray16(image.Rect(0, 0, input.Bounds().Dy(), int(width)))
result := image.NewGray16(image.Rect(0, 0, int(width), int(height)))
// horizontal filter, results in transposed temporary image
coeffs, filterLength := createWeights16(temp.Bounds().Dy(), input.Bounds().Min.X, taps, blur, scaleX, kernel)
wg.Add(cpus)
for i := 0; i < cpus; i++ {
slice := makeSlice(temp, i, cpus).(*image.Gray16)
go func() {
defer wg.Done()
resizeGray16(input, slice, scaleX, coeffs, filterLength)
}()
}
wg.Wait()
// horizontal filter on transposed image, result is not transposed
coeffs, filterLength = createWeights16(result.Bounds().Dy(), temp.Bounds().Min.X, taps, blur, scaleY, kernel)
wg.Add(cpus)
for i := 0; i < cpus; i++ {
slice := makeSlice(result, i, cpus).(*image.Gray16)
go func() {
defer wg.Done()
resizeGray16(temp, slice, scaleY, coeffs, filterLength)
}()
}
wg.Wait()
return result
default:
// 16-bit precision
temp := image.NewRGBA64(image.Rect(0, 0, img.Bounds().Dy(), int(width)))
result := image.NewRGBA64(image.Rect(0, 0, int(width), int(height)))
// horizontal filter, results in transposed temporary image
coeffs, filterLength := createWeights16(temp.Bounds().Dy(), img.Bounds().Min.X, taps, blur, scaleX, kernel)
wg.Add(cpus)
for i := 0; i < cpus; i++ {
slice := makeSlice(temp, i, cpus).(*image.RGBA64)
go func() {
defer wg.Done()
resizeGeneric(img, slice, scaleX, coeffs, filterLength)
}()
}
wg.Wait()
// horizontal filter on transposed image, result is not transposed
coeffs, filterLength = createWeights16(result.Bounds().Dy(), temp.Bounds().Min.X, taps, blur, scaleY, kernel)
wg.Add(cpus)
for i := 0; i < cpus; i++ {
slice := makeSlice(result, i, cpus).(*image.RGBA64)
go func() {
defer wg.Done()
resizeRGBA64(temp, slice, scaleY, coeffs, filterLength)
}()
}
wg.Wait()
return result
}
}
// Calculate scaling factors using old and new image dimensions.
func calcFactors(width, height uint, oldWidth, oldHeight float32) (scaleX, scaleY float32) {
// Calculates scaling factors using old and new image dimensions.
func calcFactors(width, height uint, oldWidth, oldHeight float64) (scaleX, scaleY float64) {
if width == 0 {
if height == 0 {
scaleX = 1.0
scaleY = 1.0
} else {
scaleY = oldHeight / float32(height)
scaleY = oldHeight / float64(height)
scaleX = scaleY
}
} else {
scaleX = oldWidth / float32(width)
scaleX = oldWidth / float64(width)
if height == 0 {
scaleY = scaleX
} else {
scaleY = oldHeight / float32(height)
scaleY = oldHeight / float64(height)
}
}
return
}
// Set filter scaling factor to avoid moire patterns.
// This is only useful in case of downscaling (factor>1).
func clampFactor(factor float32) float32 {
if factor < 1 {
factor = 1
}
return factor
type imageWithSubImage interface {
image.Image
SubImage(image.Rectangle) image.Image
}
// Set number of parallel jobs
// but prevent resize from doing too much work
// if #CPUs > width
func numJobs(d int) (n int) {
n = runtime.NumCPU()
if n > d {
n = d
}
return
func makeSlice(img imageWithSubImage, i, n int) image.Image {
return img.SubImage(image.Rect(img.Bounds().Min.X, img.Bounds().Min.Y+i*img.Bounds().Dy()/n, img.Bounds().Max.X, img.Bounds().Min.Y+(i+1)*img.Bounds().Dy()/n))
}

View File

@ -14,13 +14,6 @@ func init() {
img.Set(1, 1, color.White)
}
func Test_Nearest(t *testing.T) {
m := Resize(6, 0, img, NearestNeighbor)
if m.At(1, 1) == m.At(2, 2) {
t.Fail()
}
}
func Test_Param1(t *testing.T) {
m := Resize(0, 0, img, NearestNeighbor)
if m.Bounds() != img.Bounds() {
@ -53,6 +46,24 @@ func Test_CorrectResize(t *testing.T) {
}
}
func Test_SameColor(t *testing.T) {
img := image.NewRGBA(image.Rect(0, 0, 20, 20))
for y := img.Bounds().Min.Y; y < img.Bounds().Max.Y; y++ {
for x := img.Bounds().Min.X; x < img.Bounds().Max.X; x++ {
img.SetRGBA(x, y, color.RGBA{0x80, 0x80, 0x80, 0xFF})
}
}
out := Resize(10, 10, img, Lanczos3)
for y := out.Bounds().Min.Y; y < out.Bounds().Max.Y; y++ {
for x := out.Bounds().Min.X; x < out.Bounds().Max.X; x++ {
color := img.At(x, y).(color.RGBA)
if color.R != 0x80 || color.G != 0x80 || color.B != 0x80 || color.A != 0xFF {
t.Fail()
}
}
}
}
func Benchmark_BigResizeLanczos3(b *testing.B) {
var m image.Image
for i := 0; i < b.N; i++ {

49
sinc.go
View File

@ -1,49 +0,0 @@
/*
Copyright (c) 2012, Jan Schlicht <jan.schlicht@gmail.com>
Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
*/
package resize
import (
"math"
)
var (
epsilon = math.Nextafter(1.0, 2.0) - 1.0 // machine epsilon
taylor2bound = math.Sqrt(epsilon)
taylorNbound = math.Sqrt(taylor2bound)
)
// unnormalized sinc function
func Sinc1(x float64) (y float64) {
if math.Abs(x) >= taylorNbound {
y = math.Sin(x) / x
} else {
y = 1.0
if math.Abs(x) >= epsilon {
x2 := x * x
y -= x2 / 6.0
if math.Abs(x) >= taylor2bound {
y += (x2 * x2) / 120.0
}
}
}
return
}
// normalized sinc function
func Sinc(x float64) float64 {
return Sinc1(x * math.Pi)
}

View File

@ -1,38 +0,0 @@
package resize
import (
"fmt"
"math"
"testing"
)
const limit = 1e-12
func Test_SincOne(t *testing.T) {
zero := Sinc(1)
if zero >= limit {
t.Error("Sinc(1) != 0")
}
}
func Test_SincZero(t *testing.T) {
one := Sinc(0)
if math.Abs(one-1) >= limit {
t.Error("Sinc(0) != 1")
}
}
func Test_SincDotOne(t *testing.T) {
res := Sinc(0.1)
if math.Abs(res-0.983631643083466) >= limit {
t.Error("Sinc(0.1) wrong")
}
}
func Test_SincNearZero(t *testing.T) {
res := Sinc(0.000001)
if math.Abs(res-0.9999999999983551) >= limit {
fmt.Println(res)
t.Error("Sinc near zero not stable")
}
}